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ABSTRACT   

Registration of lung CT images acquired at different respiratory phases is clinically relevant in many applications, such 
as follow-up analysis, lung function analysis based on mechanical elasticity, or pulmonary airflow analysis, etc. In order 
to find accurate and reliable transformation for registration, a proper choice of dissimilarity measure is important. Even 
though various intensity-based measures have been introduced for precise registration, the registration performance may 
be limited since they mainly take intensity values into account without effectively considering useful spatial information. 
In this paper, we attempt to improve the non-rigid registration accuracy between exhale and inhale CT images of the lung, 
by proposing a new dissimilarity measure based on gradient orientation representing the spatial information in addition 
to vessel-weighted intensity and normalized intensity information. Since it is necessary to develop non-rigid registration 
that can account for large lung deformations, the B-spline free-form deformation (FFD) is adopted as the transformation 
model. The experimental tests for six clinical datasets show that the proposed method provides more accurate 
registration results than competitive registration methods. 
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1. INTRODUCTION  
 
Lung registration between CT images obtained at different respiratory phases has become essential for various 
pulmonary image based applications, such as treatment planning [1]-[3], quantitative assessments [4]-[5], and motion 
analyses [6]-[7].  For more reliable utilization of the applications, accurate registration is required. To achieve this, many 
novel registration algorithms have been presented, which commonly used intensity information in their similarity (or 
dissimilarity) measures, such as intensity difference [8]-[9], mutual information or normalized cross correlation [10]-
[11], and preserving tissue volume or lung mass [12]-[13]. Because they do not utilize the useful spatial anatomical 
information, the registration performance may be limited in important anatomical structures, such as small vessels and 
airways.  

As a trial to improve the accuracy, the similarity measure which adds the vesselness information to the intensity 
information was introduced in [14], and it showed significantly improved accuracy compared to the methods using 
intensity information only. Since vesselness information can encode the spatial information mostly on apparent tubular 
structures, however, the similarity measure needs to be further improved to enhance the registration accuracy even on the 
other structures such as fissures and lung surfaces, and ambiguous tubular structures due to low intensity contrast. 

In this paper, we introduce a new dissimilarity measure that uses gradient orientation information in addition to the 
vessel-weighted intensity and normalized intensity information. Since the proposed measure effectively manipulates both 
intensity and spatial correlation, we can further enhance the non-rigid registration accuracy.  

The remainder of this paper is organized as follows. Section 2 describes the registration framework based on the 
proposed dissimilarity measure. In section 3, experimental results with quantitative and qualitative evaluations are 
described for six clinical datasets. Finally, conclusion is given in section 4. 
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2. THE PROPOSED METHOD 

In this paper, we focus on the pulmonary image registration. Hence, we first exclude the regions other than the lung in 
each image through the segmentation based on an intensity thresholding method with a morphological closing. To 
include the nodules at the lung boundaries, a convex-hulling-based refinement is applied [15]. Using the segmentation 
results, binary lung masks are generated by morphologically dilating the segmented lung with a margin of 2 voxels. The 
masks for exhale and inhale images are denoted as Mexhale and Minhale , respectively. For the masked region, we perform 
the conventional sum of squired-intensity-difference (SSID)-based affine registration with down-hill simplex 
optimization [16] to compensate for the global deformation between the two images. Using the obtained affine 
parameters, Θ, as an initial global transformation, we then apply the proposed non-rigid registration algorithm (see figure 
1(a).). The proposed algorithm is described in detail in the following. 
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Figure 1. (a) Block diagram of the proposed non-rigid registration framework and three components consisting of the 
proposed dissimilarity measure, namely (b) vessel-weighted intensity information, (c) normalized intensity information, 
and (d) gradient orientation information.  

 

2.1 Transformation  

To compensate for the local deformation between the two images due to respiration, we adopt the B-spline free form 
deformation (FFD) model as a transformation kernel [17]. The FFD model is defined by the displacement coefficients of 
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a set of sparse and uniformly-spaced control points, which are denoted as Φ. Here, the control points act as 
transformation parameters of the B-spline FFD, which should be found through computation.  

2.2  Cost function based on the proposed dissimilarity measure 

Since pulmonary vessels are widely distributed and well defined in both lung CT images, they help to guide the 
registration process converged well by providing the strong feature information even in a large motion environment. 
Hence, we first associate the vessel-weighted intensity information (see figure 2(b).) with the dissimilarity measure 
obtained by using the multi-scale vesselness response metric [18]. To improve the registration accuracy in the other 
structural regions such as bronchi, fissures, emphysematous cysts, and especially lung boundaries distant from vessels, 
we also take the intensity information into the dissimilarity measure. The large volume deformations due to respiration 
lead to significant intensity change in the CT image. To produce better intensity correlation between the exhale and 
inhale CT images, we utilize it after intensity normalization via histogram matching [19] that modifies the histogram of 
inhale CT image, thereby being  similar to that of exhale CT image (see figure 2(c).). Meanwhile, the registration 
accuracy may be limited in the parenchymal regions and the structural regions with low intensity contrast. That is 
because they have little information enough to guide to find the reliable transformation and give almost no contribution 
to the registration process. To alleviate this problem and improve the accuracy for all lung regions, we suggest to 
consider the gradient orientation information (see figure 2(d).), which can associate the spatial information, in the 
dissimilarity measure.  

Based on the three components described above, we define the dissimilarity measure CVIO as 

  
NGF3SSNID2SSVRD1VIO CCCC ⋅λ+⋅λ+⋅λ= ,                                                          (1) 

where  
2

inhaleexhaleSSVRD ))];(()([1 ΦΘ,xrx
x

VV
N

C ∑
Ω∈Ω

−= ,                                                      (2) 

2
inhaleexhaleSSNID ))];(()([1 ΦΘ,xrx

x

NN
N

C ∑
Ω∈Ω

−= , and                                                 (3)  

2
inhaleexhaleNGF ))];((~)(~[11 ΦΘ,xrx

x

II
N

C T ∇⋅∇−= ∑
Ω∈Ω

.                                                  (4) 

 
Here, λ1, λ2, and λ3 are the weighting parameters for each cost component. x is a voxel point in the masked region of the 
exhale CT image, Ω, and r(x; Θ, Φ) is the transformation which gives the corresponding location in the inhale CT image 
to x. V( ) and N( ) are the vesselness response and the normalized intensity images for a given CT image which are 
rescaled to [0, 1], respectively. )(~

⋅∇I denotes the normalized gradient field (NGF) [20] of a CT image, which is 

determined as, 22||)(||/)()(~ ηIII +∇∇=∇ xxx where η is an edge parameter that controls the influence of small edges 
due to noise.   

In order to constrain the transformation to be smooth and prevent abrupt changes in the displacement fields, we adopt 
the curvature model based regularization cost, CREG, which is represented as 
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Using the dissimilarity measure, CVIO and the regularization measure, CREG described above, we finally define the cost 
function, C as 

REGREGVIO CCC ⋅λ+= ,                                                                            (6) 

Proc. of SPIE Vol. 9784  978440-3



t
)

(a) Fixed image (Exhale phase) (b) Moving image (Inhale phase) (c) Transformed moving image

(d) Subtraction images before registration

(e) Subtraction images after registration
 

Figure 2. Result of the proposed registration method for clinical dataset #4. Top row, left to right: Axial slice in fixed 
(exhale), moving (inhale) and transformed moving image. Middle row, left to right: Subtraction images before 
registration in axial, coronal and sagittal view. Bottom row, left to right: Subtraction images after registration. 

 

where λREG is the weighting parameters which represents the tradeoff between the alignment accuracy of two images, 
CVIO and the smoothness of transformation, CREG. 

 

2.3 Optimization  

To determine the optimal set of transformation parameters, Φ, we minimize the cost function of eq. (6) by using the non-
linear conjugate gradient decent algorithm [21]. Here, in order to improve the computational efficiency while avoiding 
local minima, we adopt a multi-resolution scheme [17] which utilizes a coarse to fine optimization.  
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3. EXPERIMENTAL RESULTS 
 
To evaluate the performance of the proposed non-rigid registration algorithm, we use six clinical lung CT datasets. In 
each clinical case, two different respiratory 3D CT images were acquired with a breath-hold at the exhale and inhale 
phases, respectively. The typical image dimensions and voxel size were 512 x 512 x 380 and 0.75 x 0.75 x 0.7mm3, 
respectively. The weighting parameters, λ1, λ2, λ3, and λREG were empirically set to 0.4, 0.4, 0.2, and 0.02, respectively, 
and the edge parameter, η was set to 50.  

Figure 2 shows the result of the proposed registration method for clinical dataset #4. Based on the subtraction images 
before and after registration, it is confirmed that the large displacement between the two images due to respiration was 
successfully corrected. In order to evaluate the performance quantitatively, we utilized two representative criteria: 
average landmark distances (with a unit of mm) on more than 100 distributed landmark pairs mostly selected at airway or 
vessel branch points, and lung volume overlap ratio based on dice similarity criterion (with a unit of percentage). In the 
table 1, it is shown that the proposed dissimilarity measure, CVIO delivered the most precise registration accuracy 
compared to those of other competitive methods in terms of both criteria. 

To cope with the memory and/or execution time limitations, a half-resolution image pair may be preferred to a full-
resolution image pair. To minimize the performance decrease due to information loss by the resolution degradation, we 
suggest to apply the multi-resolution scheme that is combined with the variable grid size as described in the table 2(b), 
rather than that combined with the constant grid size as in the table 2(a). As shown in the table 2(c) and figure 3, in spite 
of using the half-resolution image pair, the suggested multi-resolution scheme yielded the almost comparable registration 
accuracy to that of existing multi-resolution scheme based on a full-resolution image pair. 

Table 1. Comparisons of landmark distances in mm and lung volume overlap ratio before and after registration. 
(*SSVRD: sum of squired vesselness response difference, **SSNID: sum of squired normalized intensity difference). 

Datasets Before registration 
After registration 

SSID SSVRD* NGF SSNID**  
+ SSVRD Proposed 

Set 1 15.803 (82.1%) 0.751(98.6%) 0.718 (98.1%) 0.720 (98.1%) 0.722 (98.8%) 0.710 (98.9%)

Set 2 24.474 (65.0%)  1.521 (98.3%) 0.775 (95.5%) 0.866 (97.1%) 0.749 (98.8%) 0.747 (98.8%)

Set 3 20.722 (82.6%) 1.595 (95.7%) 0.762 (97.3%) 0.750 (98.3%) 0.987 (98.7%) 0.748 (99.0%)

Set 4 32.870 (68.1%) 1.371 (91.6%) 0.835 (93.9%) 0.795 (97.4%) 0.816 (98.6%) 0.781 (98.4%)

Set 5 30.669 (70.0%) 1.215 (90.7%) 0.957 (95.4%) 1.020 (96.5%) 0.944 (98.3%) 0.914 (98.5%)

Set 6 35.740 (66.4%) 1.436 (92.8%) 0.852 (94.6%) 1.066 (95.6%) 0.910 (96.2%) 0.817 (98.3%)

Average 26.713 (72.4%) 1.315 (94.6%) 0.817 (95.8%) 0.869 (97.1%) 0.855 (98.2%) 0.787 (98.6%)
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Table 2. Multi-resolution schemes based on (a) a constant-grid size and a full-resolution image, and (b) a variable-grid 
size and a half-resolution image, and (c) comparisons of landmark distances in mm after registration based on the 
proposed dissimilarity measure, depending on different multi-resolution schemes. 
 

Resolution level Image size (voxels) Control point grid 
size (voxels) Transformation model size 

Level 1 128x128x128 10 16x16x16 

Level 2 256x256x256 10 29x29x29 

Level 3 512x512x512 10 55x55x55 

(a)

Resolution level Image size (voxels) Control point grid 
size (voxels) Transformation model size 

Level 1 128x128x128 
16 11x11x11 

8 19x19x19 

Level 2 256x256x256 

8 35x35x35 

4 67x67x67 

2 131x131x131 

(b)  

3-level multi-resolution optimization 
based on a full-resolution image 

2-level multi-resolution optimization  
based on a half-resolution image 

With a constant grid size With a constant grid size With a variable grid size 

0.787 1.000 0.797 

(c)  
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Figure 3. Comparison of registration results depending on different multi-resolution schemes for clinical dataset 1. 
Difference images after registration using (a) 3-level multi-resolution scheme based on a constant-grid-size and a full-
resolution image, (b) 2-level multi-resolution scheme based on a constant-grid-size and a half-resolution image, and (c) 
2-level multi-resolution scheme based on a variable-grid-sizes and a half-resolution image.  

 

4. CONCLUSIONS 
In this paper, we present a non-rigid registration algorithm between exhale and inhale CT images of the lung. For 

registration, we introduce the new dissimilarity measure, which uses vessel-weighted intensity, normalized intensity 
information, and gradient orientation information. Since the measure effectively exploits spatial correlation as well as 
intensity correlation, we can enhance the non-rigid registration accuracy even in the large displacement environment due 
to respiration and ambiguous intensity mapping relations between two images. We also investigate the meaningful multi-
resolution scheme using variable grid sizes, which can alleviate the accuracy degradation in case that a half-resolution 
image pair has to be adopted due to memory and/or execution time limitations. 
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