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Purpose: In multiphase contrast-enhanced magnetic resonance imaging (CE-MRI), liver segmenta-
tion is an important preprocessing step for the computer-aided evaluation of liver disease. However,
because of the liver’s irregular shape, proximity to surrounding organs, and large intensity variation,
and peripheral contrast enhancement in the kidney, liver segmentation has been very challenging.
This paper presents a novel hybrid active contour model and overall procedures that are specific to
liver segmentation.
Methods: The authors introduced an edge-function-scaled (weighted) region-based active contour
model (ESRAC) and utilization of registered, multiphase sequences to address leakage-to-kidney and
oversegmentation problems. The model incorporated weighted regional information with a compactly
supported edge map, computed from a combination of images obtained during arterial and delayed
phases, and it was coupled with a geodesic edge term. To cope with signal-inhomogeneity on MRI,
all of the axial slices were partitioned into eight sectors with an angular span of 45◦, centered on the
inferior vena cava, each in the superior and inferior regions and the regional information regarding
ESRAC was computed for each partition, henceforth the so-called partitioned ESRAC (p-ESRAC).
Initialization of the active contour was performed by thresholding with a range of [200, +∞) and
simple morphological operation during the delayed phase. At the end, to fill the holes in the seg-
mented images caused by high gradients around the vasculature, noise, or outstanding texture fea-
tures, iterative morphological operations were performed until convergence. The authors compared
the segmentation accuracy of p-ESRAC to that with geodesic active contour, region-based active con-
tour, geodesic active region, and localized region-based active contour using quantitative and visual
assessments.
Results: In three-dimensional experimental studies conducted on 30 subjects (14 normal or benign
cases and 16 malignant cases), compared with other active contours, p-ESRAC achieved the highest
dice similarity coefficients of 93.9 ± 1.6% (normal) and 91.6 ± 2.2% (malignant), respectively. In
addition, p-ESRAC resulted in the lowest false positive rates of 4.5 ± 3.2% (normal) and 7.9 ± 3.0%
(malignant), demonstrating it to be the most effective in reducing oversegmentation. The partition
scheme improved segmentation accuracy by 5.4 ± 9.2% (normal) and 22.2 ± 27.6% (malignant)
of the true segmentation that was missed by ESRAC. Visual assessment confirmed that p-ESRAC
prevented leakage of the segmentation results of the liver into the kidney.
Conclusions: A novel active-contour model was developed, allowing for accurate liver seg-
mentation on multiphase CE-MRI, with conditions that include signal inhomogeneity and weak
boundary conditions. Such a technique could be useful for applications that involve computer-
aided diagnosis of liver disease. © 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4867865]

Key words: multiphase contrast-enhanced MRI, edge-function-scaled region-based active contour
(ESRAC), automated liver segmentation, level set, active contour

1. INTRODUCTION

Magnetic resonance imaging (MRI) is among the most widely
used diagnostic imaging modalities, particularly in the imag-
ing of soft tissue organs, such as the liver. Contrast-enhanced
liver MRI can be useful for numerous applications, such as

organ volume analysis, contrast-uptake-time curves, and eval-
uation of tumors, and for the analysis of changes related to
diffuse liver disease. To define the volume of interest (VOI)
for further analysis, liver segmentation is a necessary prepro-
cessing step. Segmentation in medical imaging can be divided
into manual, interactive, and fully automated approaches. In
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practice, interactive approaches, such as graph-cut1 and live-
wire2 segmentation, have been popular because they allow for
rapid verification and adjustment of automated techniques.
However, they impose an enormous burden on users when
a large amount of data must be processed. Therefore, fully
automated segmentation has become a necessity, but well-
developed techniques remain underdeveloped.

Liver segmentation is extremely challenging because of
the proximity of the liver to its surroundings and the large in-
tensity variations within it. The organs surrounding the liver
include the kidneys, pancreas, lungs, and heart. Renal excre-
tion of injected contrast material can lead to contrast enhance-
ment in the kidneys, making segmentation of the liver diffi-
cult. In addition, intensity variation in the liver can arise from
nonuniform static magnetic and RF fields3 and from nonuni-
form uptake of the injected contrast agent.

Liver segmentation techniques for MRI remain limited.
In contrast, a number of approaches have been developed
for liver segmentation on computed tomography (CT) scans.4

Shape-constrained segmentation using a statistical shape
model4–6 has shown the greatest accuracy among automatic
methods, but it requires an extensive library of training shapes
(100+ data sets) and landmarks (∼2500 points) because of
the broad variation in the shape of the liver. Probabilistic atlas-
based methods7, 8 have been applied using combinations of
statistical priors or deformation models, but they still must be
improved. An approach based on region growing using a par-
titioned probabilistic model9 that divides the liver into eight
parts has been demonstrated to be feasible and efficient with
contrast-enhanced MRI (CE-MRI), but it can result in leakage
of segmentation because of lack of topological constraints and
peripheral contrast enhancement in adjacent organs. Another
algorithm, the graph-cut method,1 is an interactive refinement
process that is highly user-interaction intensive.

The active contour approach, which uses level set repre-
sentation, is a widely used segmentation approach. It is ad-
vantageous because the resulting contours facilitate labeling
without requiring an additional process of connecting bound-
aries and because it allows for the merging and splitting of
multiple contours. However, the inherent problem with this
method is that the resulting contours are dependent on the ini-
tial selection of the contour. In addition, classic active contour
methods, such as those based on edge-based geodesic active
contour (GAC) and region-based active contour (RAC), which
use either gradient or regional statistics, are insufficient for
imperfect medical images. A unified approach to mitigating
this problem is based on geodesic active regions (GAR);10 this
method extracts the boundary attraction from the geodesic
active-contour framework and computes the regional attrac-
tion by maximizing the a posteriori frame partition probabil-
ity. However, limitations of this method have arisen because,
on contrast-enhanced MRI, the liver might not have a Gaus-
sian profile that distinguishes it from the surrounding organs.
Consequently, the segmented liver can contain nonliver re-
gions, the intensity of which overlaps with that of the liver.
Localized region-based active contour (LRAC) (Refs. 11 and
12) uses regional energy to treat cases in which global statis-
tics cannot represent the foreground and background in all of

the local regions. Its major problems are greater sensitivity to
initialization, greater computational complexity than global
region-based methods, and difficulty in determining the local
radius of the window.

In this paper, we present a novel coupled active contour
with the aid of multiphase characteristics, which was adapted
to reduce oversegmentation in contrast-enhanced liver MRI
segmentation. The partition scheme was also applied to ac-
count for heterogeneous intensity statistics in different parts
of the liver. We compared its performance to that of existing
active-contour models based on three-dimensional (3D) ex-
perimental studies.

2. METHODS

2.A. Edge-function-scaled region-based active
contour (ESRAC)

Hybrids of boundary-based segmentation and region-
based segmentation, such as GAR, incorporate the limited use
of the intensity information of an image, but they are not suf-
ficiently constrained to stop the evolution of the curve near
a high gradient, seemingly an edge, in a homogeneous local
region. Consequently, many tasks in medical imaging, includ-
ing liver segmentation on CE-MRI, suffer from leakage of
the curve. To prevent this leakage, we propose that the re-
gional information used in the active contour be weighted by
the edge function. An edge-scaled (weighted) regional term is
defined as

R =
∫

Cin

g(I (x, y))|I (x, y) − c1|2dxdy

+
∫

Cout

g(I (x, y))|I (x, y) − c2|2dxdy, (1)

where Cin and Cout denote the interior region and the exterior
region of the contour in image I, and c1 and c2 are the average
intensities in each region, updated for each iteration. g(I(x, y))
is an edge function that is a positive and decreasing function
of the gradient of the Gaussian-smoothed image I. Here, the
weightings for the foreground and the background are identi-
cal. This regional term is coupled with a geodesic edge term,
defined as the geodesic length of a curve in Riemannian space;
thus, the energy functional for the ESRAC model becomes

ESRAC = αR + (1 − α)
∫ L

0
g(|∇I (C(q))|)ds

+ν

∫
Cin

dxdy, (2)

where α controls the balance between the regional term and
the edge term, and ds = |C′(q)|d. C(q) : [0, 1] → R2 is the
parameterized, enclosed planar curve. The last regularizing
term is intended to make the curve more regular, and it is
associated with the area of the region inside the curve. The
term ν controls its weighting. The associated Euler-Lagrange
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equation for level set φ yields

∂φ

∂t
= |∇φ|

⎡
⎢⎣α(−g(I )(I − c1)2 + g(I )(I − c2)2)︸ ︷︷ ︸

region−based term

+ (1 − α)

(
g(I )κ + ∇g(I ) · ∇φ

|∇φ|
)

− ν︸ ︷︷ ︸
edge−based term

⎤
⎥⎥⎥⎦ , (3)

where κ is a curvature, defined as div( ∇φ

|∇φ| ). To date, the edge
functions have been monotonically decreasing and asymp-
totically approaching zero as the gradient approaches in-
finity. However, because of the open bound in the interval
[0, +∞), setting up the gradient threshold numerically to
force the edge function to zero has been controversial. Ad-
ditionally, the L2 norm of the gradient is anisotropic, despite
the intensity change being equivalent in all directions. There-
fore, we introduce a novel compactly supported edge function
with a L∞ norm, given by

g(I (x, y)) = (1 − λ|∇Gσ ∗ I (x, y)|2∞)2
+, (4)

where f = (1 − r)2
+ indicates that the function f is zero if r is

greater than 1. This function is continuous and differentiable
at r = 1, so it belongs to class C1. The threshold λ is the
inverse of the lowest squared L∞ norm that makes Eq. (4)
equal to zero, or λ = 1

|∇GT |2∞ .
Table I lists the different characteristics of active contour

models, using every possible combination in terms of edge
and regional significant differences. In particular, in separable
regions with above-threshold gradient magnitudes but statisti-
cally insignificant regional differences and vice versa, the ex-
isting hybrid methods (GAR or LRAC) cannot ensure that the
contour stops unless the sum of the regional and edge energies
becomes zero. In contrast, ESRAC can stop at the boundary
because the regional term is weighted with the edge function
of zero value, which forces both the regional energy and the
edge energy to zero. Additionally, in the opposite case, with a
small gradient but statistically significant regional difference,
the evolution of ESRAC can be stopped by the minimization
of the regional energy, which contributes more to the total
energy than to the edge energy. It can occur that an edge in-
dicating some of the features (e.g., vasculature) in the target
may not be included in the segment by ESRAC. However, if
it is geometrically enclosed or semienclosed by the curve, the
region will be included by the postmorphological operation.

TABLE I. Propagation states of various active contours—GAC, CVRAC,
GAR, LRAC, and ESRAC—depending on the existence of the edge and re-
gional significant differences.

GAC CVRAC GAR/LRAC ESRAC

Edge: Yes; regions: Yes Stopped Stopped Stopped Stopped
Edge: Yes; regions: No Stopped Moving Either Stopped
Edge: No; regions: Yes Moving Stopped Either Stopped
Edge: No; regions: No Moving Moving Moving Moving

FIG. 1. Liver segmentation steps.

2.B. Application to multiphase contrast-enhanced
liver MRI

As shown in Fig. 1, our liver segmentation consisted of
five steps: (1) image registration of all of the phases to cor-
rect for motion artifacts; (2) inferior vena cava detection to
find the origin of the partition; (3) partitioning to separate the
entire image volume into multiple regions; (4) active contour
to segment the liver tissue; and (5) an iterative morphological
operation to fill the elongated holes and smooth the surface.

2.C. Multiphase image registration

For motion correction of the liver on multiphase images,
translation-only registration corrects for most rigid-body mo-
tion. We searched for the translational direction for which the
normalized cross-correlation over the rectangular mask con-
taining the liver would be maximized. Under the assumption
of affine and local changes in contrast, the bidirectional local
correlation coefficient Demons algorithm,13 which is a varia-
tion of the original Demons algorithm, was used to correct for
the remaining nonrigid tissue motion. The velocity field for
each iteration was computed, and the iteration stopped when
the sum of the local correlation coefficients over the mask
no longer improved. Because the numerical computation was
simple and highly parallelizable, it could be implemented on
a graphical processing unit (GPU) and could achieve a sub-
minute runtime with a high speed-up factor. In simulations
using an artificially deformed phantom image, the average
displacement error was shown to be 0.34 mm (subvoxel size).

2.D. Liver partitioning

The signal quality of contrast-enhanced liver MRI can
be affected by inhomogeneities caused by scanner imper-
fection and localized contrast uptake. To improve intensity-
based segmentation, bias field correction is necessary. One
approach is to estimate the bias field directly in a parametric14

or nonparametric15 manner. However, this approach assumes
that the image is composed of pixels assigned to a small num-
ber of categories, so it is more appropriate for brain or breast
MRI than for abdominal MRI, in which multiple structures
are present. The alternative is to divide the image volume into
multiple partitions in a predefined pattern and to compute the
foreground and background regional statistics for each par-
tition separately in the segmentation framework. In this re-
search, each axial plane was divided into multiple partitions
with the angular span of 45◦, centered from the inferior vena
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FIG. 2. Partition of the liver: (a) and (b) An accumulation map of the circular Hough transform for detecting the aorta in the arterial phase; (c) the delayed
phase; (d) inferior vena cava detection (ellipse) within a certain range (dashed circle) of distance from the aorta in the subtraction of the delayed phase from the
arterial phase (axial view); (e) a 3D rendering lateral view of the portal vein, inferior vena cava, and aorta from left to right; (f) a lateral view of liver partitions
represented with labels (angular distance = 45◦).

cava. In Fig. 2, to determine the center of the inferior vena
cava, a circular Hough transform16 first detected the circular
shape of the abdominal aorta within a specific diameter range
(14–24 mm) on each axial plane during the arterial phase.
Then, the postcontrast enhanced delayed phase image was
subtracted from the earlier arterial phase image, which had
positive intensities only in the inferior vena cava and the por-
tal vein inside the liver region. A search was undertaken for
the inferior vena cava within 60 mm of the aorta. On each
axial plane, the center of the inferior vena cava was deter-
mined using the ellipse detection method,17 with the range of
the major axis of the ellipse set to between 5 and 30 mm and
the accumulator points weighted by the grayscale intensity.
Additionally, the portal vein was identified via thresholding
(greater than 100) and by searching for the largest 3D con-
nected region located in the region to the left of the inferior
vena cava. The image volume was bisected into superior and
inferior regions by the axial plane passing through the cen-
troid of the portal vein segment. This radial pattern allowed
each partition to have the liver (foreground) and nonliver
(background) regions simultaneously used for p-ESRAC, and

it approximated the radial vascular network of the hepatic
vein.18

To apply these partitions in the ESRAC model, we con-
structed a label array L(x, y) that consisted of integer elements
1 to M to represent M exclusive partitions. A mask T(L(x, y),
k), corresponding to the kth partition, is given by

T (L(x, y), k) =
{

1, if L(x, y) = k;

0, otherwise,
(5)

Partitioned regional energy term
(
ck

1, c
k
2, C

)
=

M∑
k=1

[∫
Cin

T (L(x, y), k)g(I (x, y))

×|I (x, y)−ck
1|2dxdy+

∫
Cout

T (L(x, y), k)g(I (x, y))

×|I (x, y) − ck
2|2dxdy

]
, (6)
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FIG. 3. Initialization, contour evolution, and iterative morphological operation: (a) original delayed-phase image; (b) thresholding above the intensity of 200;
(c) 3D erosion (several neighboring regions are not 3D-connected); (d) the selection of the largest connected 3D region; (e)–(k) resulting contours at 1, 50, 150,
350, 500, 600, and 1000 iterations; (l) iterative morphological operations (filling and closing).

where ck
1 and ck

2 denote the average intensities inside and out-
side the contour in the kth partition, respectively. The associ-
ated level set is given by

∂φ

∂t
=|∇φ|

{
α

M∑
k=1

T (L, k)
[
g(I )

(
I −ck

1

)2+g(I )
(
I −ck

2

)2]

+ (1 − α)

(
g(I )κ + ∇g(I ) · ∇φ

|∇φ|
)

− ν

}
. (7)

2.E. Liver tissue segmentation using p-ESRAC

To initialize a seed contour, as shown in Figs. 3(a)–3(d),
thresholding with a range of [200, +∞) was applied to the
delayed-phase image. Subsequently, to remove isolated seg-
ments and unnecessary connections from surrounding objects,
we performed four iterations of 3D erosion using a spherical
structure with a five-voxel radius on the resultant binary im-
age. Then, from the eroded binary mask, the largest connected
3D region with six connected neighbors was chosen as the

initial segmentation mask. To apply the level set framework
of p-ESRAC, the initial mask was used for calculating the
signed distance function (SDF), representing the level set, the
zero (SDF = 0) of which was located between the foreground
(SDF > 0) and background (SDF < 0) regions.

The intensity probability density distributions for the liver
and other surroundings in normal subjects and subjects with
disease are different. The contrast of the liver against the ab-
dominal wall, pancreas, and stomach is high during the de-
layed phase in both cases. However, regarding contrast against
the kidney, the contrast is not the same. The kidney appears
most enhanced during the arterial phase and then decreases
with time, while the liver remains enhanced up to the delayed
phase in normal subjects. However, in cases of pathology, the
uptake of the contrast agent by liver cells is absent, so the
signal remains constant or decreases after the first peak dur-
ing the arterial phase. Therefore, during the delayed phase, the
contrast between the liver and the kidney in pathological cases
is not as high as in the normal case. That the high contrast of
the liver against the kidney is acquired from the arterial phase,
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FIG. 4. Computation of the gradient: (a) motion-corrected image during the arterial phase; (b) motion-corrected image during the delayed phase; (c and d) the
L∞ norms of the gradient during the arterial and delayed phases, respectively; (e) the element-wise maxima of the L∞ norms during the two phases. The circles
indicate regions where the gradient is not sufficiently large during each phase. This combination yielded a better gradient image (e).

while the high contrast against all other surroundings, except
for the kidney, is acquired from the delayed phase, helps to
address this problem. To incorporate this knowledge into the
ESRAC model, elementwise maxima of the L∞ norms of the
gradient are computed in the Gaussian-smoothed arterial and
delayed phases, as shown in Fig. 4, while the partitioned re-
gional statistics are computed in the delayed phase only. Prior
to segmentation, resampling to the isotropic voxel size is nec-
essary for the smooth evolution of the contour. As illustrated
in Figs. 3(e)–3(k), the active contour is iteration-based, so it
is repeated until the mean of the absolute difference between
the current and previous level sets in the entire image domain
is less than 5 × 10−4. The maximum number of iterations was
103. The parameters α and ν in Eq. (7) were 0.9 and 0.02, re-
spectively. The sigma of the Gaussian smoothing was 0.5, and
the gradient threshold λ in Eq. (4) was 10−2.

2.F. Iterative morphological operations

Upon completing the segmentation using the active con-
tour described above, iterative morphological operations
(IMOs) were performed to acquire the enclosed and smooth
segmented volume. Intensity-based methods are prone to
missing vasculature or outstanding textural features inside the
liver. Furthermore, p-ESRAC responds more sensitively to
the edge map than the original region-based active contours.
Our solution was to first apply a filling operation to remove
the elongated holes and then a closing operation, which con-

sisted of dilation followed by erosion, using a 3D morpholog-
ical structuring element with a 3 × 3 × 3 ball. These IMOs
were repeated until the volume of nonzero voxels no longer
changed, yielding a single contour curve with no holes, as il-
lustrated in Fig. 3(l).

3. EXPERIMENTAL RESULTS

A gadolinium (Gd)-based, contrast-enhanced, T1-
weighted gradient echo protocol19 was used to image the
liver in 30 human test subjects: 14 normal or benign cases
diagnosed with chronic liver disease and 16 malignant cases
with cirrhosis or necrosis. Additional five human subjects
(three normal and two benign) were used for training and the
selection of parameters. In validating the registration method,
we used eight different divergence-free deformation models
to derive the true deformation field and to generate the
target image by adaptively deforming the reference image13

because the true dense deformation field between two given
multiphase MR images is generally unknown. In contrast,
segmentation of the contrast-enhanced liver using real
image data can be manually delineated by clinical experts,
and it is generally regarded as ground truth. The imaging
protocol consisted of three-dimensional precontrast (0 s) and
postcontrast scans (20 s: arterial phase; 1 min: portal-venous
phase; 20 min: delayed phase) after the administration of
a gadoxetic acid (Gd-EOB-DTPA) contrast agent (Eovist;
Bayer HealthCare). The contrast agent was taken up by liver
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tissue, enhancing healthy liver tissue, while lesions with no
or minimal hepatocyte function remained unenhanced. Note
that approximately 50% of the injected contrast agent was
renally excreted, whereas the other 50% was transported to
the liver and then excreted via the biliary system.20 This dual
elimination yielded contrast enhancement in two organs with
different patterns over time. The size of each scan was 256
× 256 × 128, the inplane resolution was 1.46 mm, and the
slice thickness was 3 mm without a gap. All of the patient
MRI data were obtained with hospital internal review board
approval, and this study was HIPAA-compliant.

A reference volume was manually delineated by a radiol-
ogist for use as a gold standard in evaluating the performance
of the segmentation. It was initiated by thresholding and was
then modified by removing or adding the extra volume or
by filling the gaps manually using a graphic tool. The same
initial seeds were applied to the initialization of all the auto-
mated segmentations. We performed exemplary segmentation
methods and quantified the segmentation accuracy using the
following metrics: the dice similarity coefficient (DSC), the
true-positive rate (TPR), the false-positive rate (FPR), the vol-
umetric overlap error (VOE), and the average symmetric sur-
face distance (ASSD) which computes the average distance of
the closest voxels along the reference and segmented borders.
The R2 coefficient, which is the square of the correlation co-
efficient between the reference and segmented volumes, was
also evaluated. Larger absolute values of DSC, TPR, and R2

and smaller absolute values of FPR, VOE, and ASSD corre-
sponded to greater segmentation accuracy:

Metric Definition

DSC
VS ∩ VR

0.5 ∗ (VS + VR)

TPR
VS ∩ VR

VR

FPR
VS ∩ V c

R

VR

VOE 1 − VS ∩VR

VS ∪VR

where VS and VR denote the segmented and reference-
volume masks, respectively, which could have values
of 0 or 1.

3.A. Validation of partitioned ESRAC (p-ESRAC)

To validate the partitioning of the liver, the results with
p-ESRAC were compared to those with ESRAC. The appli-
cation of segmentation algorithms can result in segmenta-
tion consisting of too few (undersegmentation) or too many
(oversegmentation) regions. In Fig. 5, signal inhomogeneity
appears over several vulnerable regions that are susceptible
to undersegmentation, particularly where the left lobe region
was lower in intensity than the other regions. In the test re-
sults, a large portion of the segmented volume was similar
between p-ESRAC and ESRAC. However, when using ES-
RAC, the vulnerable regions were not included. In contrast,

FIG. 5. Visual comparison between p-ESRAC and ESRAC. For two malig-
nant cases (a) and (b), the first row indicates the segmentation (mask) with
ESRAC with the reference (contour) superposed, while the second row in-
dicates the segmentation with p-ESRAC on the axial (first column), coronal
(second column), and sagittal (third column) planes.

the p-ESRAC segmentation, which was dictated by the local
mean in the partition to which the contour segment belonged,
identified a greater liver volume in the region than ESRAC
segmentation.

To measure the improvement quantitatively, we introduced
in Eq. (8) a segmentation improvement ratio to demonstrate
the change in volume segmented by p-ESRAC relative to the
volume segmented by ESRAC. The first term of the metric
indicates the ratio of the true volume added by p-ESRAC to
the true volume missed by ESRAC. The second term indicates
the ratio of the true volume missed by p-ESRAC to the true
volume segmented by ESRAC

Segmentation improvement ratio

= V c
A ∩ VB ∩ VR

V c
A ∩ VR

− VA ∩ V c
B ∩ VR

VA ∩ VR

, (8)

where VA and VB are the volume masks segmented by ES-
RAC and p-ESRAC, respectively, and VR is the reference vol-
ume mask. Table II shows that the results changed as how
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TABLE II. The values of the segmentation improvement ratio relative to the
angular distance in partitioning. The boldface value indicates the optimal so-
lution in a given set of tests.

Angular Number
Mean ± Std (%)

distance (deg) of partitions Normal and benign Malignant

15 48 2.44 ± 9.23 6.18 ± 10.11
30 24 4.73 ± 9.34 9.96 ± 13.10
45 16 5.39 ± 9.17 22.19 ± 27.55
60 12 3.74 ± 8.49 12.37 ± 14.80
90 8 2.72 ± 6.42 16.24 ± 21.91

finely the whole region was partitioned. It is obvious that
p-ESRAC exhibited improved performance compared with
ESRAC and that, in normal cases, the angular distance of
45◦ (16 partitions, eight each in the superior and inferior re-
gions) yielded the highest segmentation improvement ratio of
5.39 ± 9.17%. In the malignant cases, the measurement with
the same settings increased to 22.19 ± 27.55%. This finding
demonstrates that the partition significantly improved the seg-
mentation accuracy, especially with the angular distance of
45◦ showing the best numerical results. In fact, the partition
configuration most closely approximated the angular spacing
of the three hepatic veins, used for dividing functional liver
anatomy, radially distributed in the liver.

3.B. Comparison of p-ESRAC to other techniques

To confirm that p-ESRAC is most suitable for contrast-
enhanced liver MRI, we compared p-ESRAC to other
intensity-based automated segmentation techniques, includ-
ing GAC and Chan-Vese region-based active contour
(CVRAC) methods, as well as hybrid methods of GAR and
LRAC. In the cases of the methods that use regional informa-
tion, they were modified to accommodate the partition scheme
and are referred to as p-CVRAC and p-GAR. Note that LRAC
inherently benefited from localization in a dynamic way, so it
was not tested with the partition scheme. Empirically, the size
of the local mask applied in LRAC was tuned to be ∼20 vox-
els. For all of the methods, we used an identical edge map
that was extracted during the arterial and delayed phases, and
regional information was obtained during the delayed phase
only, as explained in Sec. 2. After segmentation, IMO was
performed.

Figure 6 shows that p-CVRAC produced better results
than the previous methods, substantially curbing oversegmen-
tation, but the leakage-to-kidney problem still occurred and
must be addressed. Our p-ESRAC method worked exception-
ally well in most of the cases, considerably improving the
oversegmentation problem. In comparison with the existing
hybrid active contours in Fig. 7, p-GAR could not avoid leak-
age to the kidney and to a small portion of the surroundings
in all three cases. LRAC prohibited leakage to the kidney
in the first two cases, in which the boundary with the kid-
ney was clear, yet it still suffered from this problem under
the more difficult conditions of the third case. In addition,

FIG. 6. Visual comparisons among the four segmentation approaches. The
reference contour is inscribed on the delayed phase (first column), the seg-
mentations (masks) with GAC (second column), p-CVRAC (third column),
and p-ESRAC (fourth column) are shown for four different subjects. The re-
sults are shown on the coronal (top) and axial (bottom) planes.

it suffered from undersegmentation in the liver tissue near
strong vascular structures, which could be attributed to the
greater sensitivity of LRAC to local changes. In contrast, p-
ESRAC outperformed all of the other methods evaluated here
and yielded the most desirable results, with neither leakage
nor undersegmentation. Based on the dice similarity coeffi-
cient and volumetric overlap error quantifying the overlap be-
tween the automatic and manual segmentations for the normal
and benign cases in Fig. 8, p-ESRAC proved to be superior.
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FIG. 7. Visual comparisons among hybrid active contours: (b) p-GAR, (c) LRAC, and (d) p-ESRAC. The original image and the reference contour are shown
on the delayed phase in the first column (a), and the segmentation results are shown as masks.

FIG. 8. Segmentation accuracy (mean and standard deviation) comparisons among intensity-based active contours tested in normal or benign cases (diamond)
and malignant cases (square) in the metrics of (a) DSC, (b) FPR, (c) VOE, and (d) ASSD. Note that DSC is changed to 1-DSC for consistency with the other
graphs.
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FIG. 9. Correlation between the segmented volume and the reference vol-
ume in normal-benign case and malignant case.

The false-positive rate, which accounts for oversegmentation,
indicated that p-ESRAC considerably decreased oversegmen-
tation artifacts and had the lowest value among all of the com-
pared methods. In terms of the true-positive rate, which indi-
cates the undersegmentation rate, p-ESRAC produced a lower
value (92.5 ± 3.1%) than the other methods (p-CVRAC, 99.2
± 1.1%; p-GAR, 98.4 ± 2.5%; LRAC, 94.8 ± 8.5%) because
the gradient close to the boundaries was strong, which in-
creased the risk of undersegmentation near the border. How-
ever, this issue is not serious because the voxels of the sub-
border are of little interest in subsequent image analysis. p-
ESRAC had the lowest values for the average symmetric sur-
face distance. Based on the R2 in Fig. 9, the volume was most
linearly correlated between the automatic and manual seg-
mentations for LRAC and p-ESRAC. Additionally, note that
LRAC achieved good segmentation quality, similar to that of
p-ESRAC, for most of the metrics.

For the malignant cases, p-ESRAC achieved slightly lower
accuracy than that for the normal cases, yet it still outper-
formed the other techniques—the mean dice similarity coeffi-
cient was 91.6% in the malignant cases compared to 93.9% in
the normal cases, the mean false-positive rate was 7.9% (ma-
lignant) compared to 4.5% (normal), and the average sym-
metric surface distance was 2.5 mm (malignant) compared to
1.8 mm (normal). These results occurred because the liver
in the malignant cases was seriously damaged, leading to
loss of liver function such that the contrast in the liver was
poor. Additionally, this liver damage was accompanied by
anatomical changes. However, the test results in both cases
demonstrated that LRAC was not relatively robust—the mean
dice similarity coefficient was 61.5% (malignant) compared
to 90.8% (normal), the mean false-positive rate was 94.5%
(malignant) compared to 14.0% (normal), and the average
symmetric surface distance was 7.2 mm (malignant) com-
pared to 2.7 mm (normal). We measured the ratio of the miss-
ing structures, such as vasculature or outstanding textural fea-
tures in the liver, which were not captured by active con-
tours but were included by additional iterative morphological
operations. Compared with p-GAR and LRAC, as shown in
Table III, the ratio of p-ESRAC was higher by a factor of
approximately 2 (11.78 ± 1.09%) compared to its counter-
parts because of the greater sensitivity of the edge map to

TABLE III. The ratio of structures excluded in segmentation, resulting from
active contours, to the final volume after iterative morphological operations.

Mean Standard deviation

p-GAR 6.23% 0.45%
LRAC 5.91% 0.15%
p-ESRAC 11.78% 1.09%

the regional information. Figure 10 illustrates how well p-
ESRAC responded to the edges around the structures in the
liver. This characteristic might be undesirable for segment-
ing the entire liver volume. However, if only the parenchymal
region is considered for computer-aided diagnosis, and extra
vessel segmentation is bypassed, p-ESRAC would be the best
choice among them. Even for whole-liver segmentation, an it-
erative morphological iteration step is necessary, not only in
p-ESRAC but also in its counterparts. Thus, it is difficult to
claim that the greater response of p-ESRAC to hepatic struc-
tures constitutes some vulnerability in its application.

4. DISCUSSION

The main objectives of this paper were to introduce a novel
hybrid active-contour framework for liver segmentation and
to compare its performance to that of other existing active
contours in multiphase contrast-enhanced liver MRI. Segmen-
tation of the liver is an extremely difficult, complex task be-
cause of dual enhancement and the geometric proximity to
other tissues adjacent to the liver, including the right kid-
ney. To address these problems, we presented a novel edge-
function-scaled (weighted) region-based active contour algo-
rithm and utilized multiphase contrast-enhanced image se-
quences to address the leakage-to-kidney and under- and over-
segmentation problems. We applied the multiple-partition
scheme to the active-contour framework because of the in-
homogeneous intensity distribution, and we verified this ap-
plication through qualitative and quantitative evaluations with
manually segmented reference volumes from 14 normal or be-
nign cases and 16 cases with malignant liver lesions. The ex-
perimental results revealed that the ESRAC model markedly
reduced oversegmentation, including leakage to the kidney,
which was the main strength of this model. Furthermore, its
partitioned version, p-ESRAC, at an optimized angular dis-
tance of 45◦, increased the true segmentation by 5.4% over
ESRAC for benign cases and 22.2% for malignant cases. In
comparison to other intensity-based segmentation methods
(p-CVRAC, GAC, p-GAR, and LRAC), p-ESRAC yielded

FIG. 10. Response of (a) p-GAR, (b) LRAC, and (c) p-ESRAC to high gra-
dients before applying iterative morphological iterations.
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the most accurate performance; it exhibited a mean dice
similarity coefficient of 93.9 ± 1.6% for normal or benign
cases and 91.6 ± 2.2% for malignant cases, demonstrating
robust performance in both sets of patients. A limitation of p-
ESRAC is that it is more likely to exclude internal structures,
such as vasculature and strong texture features, in segmen-
tation than the other techniques. The reason for this behav-
ior is the high responsiveness of this model to the edge map.
However, overall, intensity-based active contours are also not
entirely free from this issue, so they must generally undergo
postprocessing, such as morphological operations, to include
the internal structures. Additionally, because multiphase im-
age data were used in our model, image registration was an
essential prerequisite.

In this study, we used an Intel Xeon CPU X5355 @ 2.66
GHz with 16 GB of main memory in a Linux OS. The overall
process of evaluating the p-ESRAC model included detecting
the inferior vena cava, initializing seeds, resampling, down-
sampling, and implementing the active contour and IMO.
Completing all of the computations took 13 min, including 1
min for registration using GPU processing, 7.8 min of which
were required for implementing the active contour for 700
iterations to resampled and downsampled images. In con-
trast, manual segmentation required approximately 30 min
for one subject. Therefore, by employing the automated p-
ESRAC model, the segmentation time was reduced by 57%.
The other active contours required similar computation times
to p-ESRAC except for LRAC, which took 3–5 times longer,
which is one of the disadvantages of LRAC.

5. CONCLUSION

We developed a hybrid active contour model for seg-
mentation of the liver on contrast-enhanced liver MRI. This
model was designed to prevent oversegmentation and leakage
to adjacent organs, particularly the right kidney, and it was
achieved by weighting regional information with an edge map
computed from a combination of the registered arterial and
delayed phases, coupled with a geodesic edge term. A parti-
tion scheme was applied to the model to increase the true-
positive segmentation rate. Experiments on 30 patient sub-
jects, consisting of 14 normal or benign cases and 16 ma-
lignant cases, showed that our model outperformed the other
existing active contours. Therefore, p-ESRAC is a promising
segmentation technique for DCE liver MRI. In future work,
we will verify our algorithm in other applications and target
and translate the use of this algorithm to clinics.
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