
GPU-BASED MOTION CORRECTION OF CONTRAST-ENHANCED LIVER MRI SCANS:
AN OPENCL IMPLEMENTATION

Jihun Oh1, Diego Martin3, Oskar Škrinjar1,2

1 School of Electrical and Computer Engineering, Georgia Tech, Atlanta, GA 30332, USA
2 Department of Biomedical Engineering, Georgia Tech, Atlanta, GA 30332, USA

3 Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA

ABSTRACT

Clinical diagnosis and quantification of liver disease have
been improved through the development of techniques using
contrast-enhanced liver MRI sequences. To qualitatively or
quantitatively analyze such image sequences, one first needs
to correct for rigid and non-rigid motion of the liver. For mo-
tion correction of the liver, we have employed bi-directional
local correlation coefficient Demons, which is a variation of
the original Demons method. However, despite the intrinsic
speed of the Demons method, the run-time on the order of an
hour of its CPU-based implementation is not sufficiently short
for a regular clinical use. For this reason we implemented the
method on a graphics processing unit (GPU) using OpenCL.
On NVIDIA GTX 260M, which is a laptop GPU, we achieved
sub-minute runtime for the motion correction of typical liver
MRI scans, which was ∼50 times faster than its CPU-based
implementation. A sub-minute runtime of liver MRI motion
correction allows for its regular clinical use.

Index Terms— graphics processing unit, GPU, OpenCL,
contrast-enhanced liver MRI, image registration, Demons

1. INTRODUCTION

In the United States liver disease is the 4th leading cause of
death during the most productive adult years [1]. Hepatitis
results from a variety of etiologies, all having the capacity
to induce inflammation and fibrosis leading to chronic liver
disease (CLD). CLD is a common cause of primary liver ma-
lignancy, which is becoming one of the more common malig-
nancies overall. Metastatic liver tumors are relatively com-
mon, and the liver normally frequently generates benign tu-
mors. Contrast enhanced MRI has become the primary imag-
ing modality of choice for delineation of liver disease. The
capacity to compare sequential pre- vs. post-contrast dynam-
ically enhanced liver images has been limited to observer-
based analysis. The use of automated computer aided anal-
ysis would be helpful, but currently it is limited by the lack of
available commercial software tools.

To qualitatively or quantitatively analyze features in liver
image sequences one first needs to correct for rigid and non-

rigid motion of the liver, i.e. to register the images in the
sequence. As a very popular non-rigid image registration
method, Thirion in 1998 introduced Demons [2], in which
numerical computation of incremental displacement field for
each iteration is simple and highly parallelizable. Its ex-
tended version, local correlation coefficient (LCC) Demons
[3], replaces the assumption of the Demons method that the
intensities of corresponding locations of the two images are
identical with a locally affine intensity relations. This is
achieved by computing local correlation coefficient between
the two images centered at each voxel. Its accelerated ver-
sion, bi-directional LCC (bi-LCC) Demons, is introduced in
Sec. 2.2.2.

Despite the computational efficiency of Demons and its
variations, their execution time for the registration of typi-
cal liver MRI scans is on the order of one hour when imple-
mented in CPU. However, execution times on the order of
one minute or less are needed for regular clinical use. Graph-
ics processing units (GPU), which typically have 100+ pro-
cessing elements, on-board memory of over 1 GB, and a high
bandwidth (25+ time faster than the bandwidth of CPU main
memory) for data transfer, have been used for computation-
ally intensive processing tasks. E.g., in the image registration
field researchers have studied a CUDA implementation of the
Demons method [4, 5]. However, a restriction of CUDA is
that it is platform-, vendor-, and hardware-specific, in contrast
to Open Computing Language (OpenCL), which supports a
diverse mix of parallel CPUs, GPUs, and other processing
units [6].

2. METHODS

2.1. MRI Acquisition Protocols and Subjects

Gadolinium-based contrast-enhanced MRI has been utilized
to detect the presence of hepatic inflammation in acute and
chronic liver disease. Seven scans were obtained at 20 sec,
1 min, 3 min, 5 min, 10 min, 15 min, and 20 min after the
administration of the contrast agent. For each post-contrast
scan, we corrected for liver motion relative to the pre-contrast
scan. The scan had 128 contiguous slices with 256 x 256

783978-1-4244-4128-0/11/$25.00 ©2011 IEEE ISBI 2011

pixels, in-plane resolution of 1.46 mm and slice thickness of
3 mm.

2.2. Image Registration

2.2.1. Translation-only Registration

Based on inspection of hepatic motion, translational move-
ment represents its major portion, with the dominant com-
ponent in the cranio-caudal direction, some translation in the
anterior-posterior direction and the least translation in the lat-
eral direction. For this reason, we ignore the rotation of the
liver in this initialization step. We search for the translational
direction (among the current position and six test positions:
±Δtx, ±Δty , and±Δtz) for which the normalized cross cor-
relation (NCC) over the segmented liver dilated with a few ex-
tra layers of voxels is maximized. This process is iterated un-
til NCC can no longer be improved. Then we reduce the step
size and repeat the process to achieve coarse-to-fine transla-
tional alignment.

2.2.2. Bi-directional Local Correlation Coefficient (LCC)
Demons

While the translation-only registration corrects for most of
rigid body motion, due to tissue deformation the liver is not
fully aligned. To correct for the remaining non-rigid motion,
we introduce an accelerated version of local correlation co-
efficient (LCC) Demons, bi-directional LCC demons. The
incremental displacement field for each iteration is

�u =
2EM

�∇EM∥∥∥�∇EM

∥∥∥2

+ 4α2(EM)2
−

2ES
�∇ES∥∥∥�∇ES

∥∥∥2

+ 4α2(ES)2
, (1)

where EM , ES , and their simplified energy gradient expres-
sions are defined as

σ2

p(S) = S2
p − S

2

p = Gσlcc
∗ (S2)[p] − (Gσlcc

∗ S)2[p],

(2)

〈S,M〉p = SMp − SpMp, (3)

= Gσlcc
∗ (SM)[p] − (Gσlcc

∗ S)[p](Gσlcc
∗ M)[p], (4)

EM = LCCp(S,M ◦ u) =
< S,M ◦ u >p

σp(S)σp(M ◦ u)
, (5)

ES = LCCp(S ◦ u,M) =
< S ◦ u,M >p

σp(S ◦ u)σp(M)
, (6)

�∇EM ≈
�∇M

σp(S)σp(M)

(
Ŝ − M̂

< S,M >p

σ2
p(M)

)
, (7)

�∇ES ≈
�∇S

σp(S)σp(M)

(
M̂ − Ŝ

< S,M >p

σ2
p(S)

)
, (8)

Ŝ = S − Sp, M̂ = M − Mp. (9)

Fig. 1. GPU-based liver image registration system

In the above equations S represent the static image, M the
moving image, Gσ Gaussian filtering with standard deviation
σ, and p the point at which the equations are computed.

In this method Gaussian filtering is used for three pur-
poses: to compute the local statistics at p (σlcc), to regularize
the incremental displacement field (σfluid), and to regularize
the total displacement field (σdiffusion). The iterations would
normally stop when the sum of LCC over the entire liver no
longer improves. However, to avoid small local maxima, we
run an additional number of iterations.

2.3. GPU Implementation Using OpenCL

OpenCL supports a relaxed version of the data parallel pro-
gramming and an implicit model. The programmer speci-
fies the number of work-items in a work-group and the to-
tal number of work-items. A division into the work-groups
is automatically managed by the OpenCL implementation.
Fig. 1 illustrates our system of GPU-based liver MR image
registration. It consists of two programs, “translation-only
registration” and “bi-LCC Demons,” and each program has
kernels necessary for its implementation. Input images (seg-

784

mented, fixed, and moving images) are written into the buffers
in global memory of GPU. The output image of each program
is saved back to host memory. The rigid-body transformed
moving image is additionally written into an image object by
utilizing hardware interpolation.

To efficiently implement the motion correction method,
we utilize the following GPU resources: pre-compilation,
hardware interpolation, and parallel reduction operation.
First, in contrast to CUDA in which programs are com-
piled with an external tool before execution, the OpenCL
compiler is invoked at runtime. To pre-compile OpenCL,
programmers can use the clGetProgramInfo() API call to
retrieve a compiled binary and save it for later use. Then,
with the clCreateProgramWithBinary() call, one can create
an OpenCL program object directly from the pre-compiled
binary. Second, an image object is used to store a two-
or three-dimensional texture, frame-buffer, or image. The
built-in image function, “read imagef,” reads a sampled (in-
terpolated) value at a non-integer coordinate of the image
object with either a nearest neighbor or a linear option. In
the kernel, after elements of the input are read from the im-
age object, their hardware-interpolated elements are written
back to the buffer object, which stores the updated elements
of the moving image. Third, when reducing an array of
values to a single value in parallel such as NCC or SLCC,
the strategy of parallel reduction is very important for ef-
fective processing. The details about conflict-free sequential
addressing and complete unrolling techniques involved in
parallel reduction are presented in SDK guides provided by
NVIDIA. In addition, page-locked memory transfers attain
the highest bandwidth (5+ GB/s) between a host and a device,
and cached memory (constant or texture memory) is useful
for storing frequently-loaded and small data, e.g., Gaussian
kernels.

2.4. Validation

To validate the method, we generated simulated images by ar-
tificially deforming real images using a divergence-free defor-
mation model. A selected point P = (Px, Py, Pz) is moved in
a desired direction by displacement Δ, which smoothly pulls
along its neighborhood of size σ. Assuming P moves in the z

direction, the displacement field of the deformation model is

ux = Δ
(x − Px)(z − Pz)

x2 + y2

[
e−

(z−Pz)2

2σ2 − K

]
, (10)

uy = Δ
(y − Py)(z − Pz)

x2 + y2

[
e−

(z−Pz)2

2σ2 − K

]
, (11)

uz = ΔK, (12)

where K = e−
(x−Px)2+(y−Py)2+(z−Pz)2

2σ2 . We tested eight dif-
ferent situations: the movement of a liver point P in the x, y,

z, and oblique (
√

1

3
,
√

1

3
,
√

1

3
) directions, with Δ = 10 mm

Fig. 2. Simulation results: the mean and max displacement
errors for the eight cases. All units are millimeters.

and σ = 30 mm for local deformation, and Δ = 10 mm

and σ = 60 mm for global deformation. To account for
the contrast-enhancement, we applied the following intensity
transformation: Isimulated = 1.4 · Ireal,deformed + 96.

Including our GPU, the mobile GPU models before the
Fermi architecture of NVIDIA or 6xxx level of ATI do not
support the double precision floating-point format (double).
With only the single precision floating-point datatype avail-
able in our GPU, we validated the motion correction results
against the simulated motion, which was generated using
double-precision arithmetic.

3. RESULTS AND CONCLUSION

The laptop used in the experiments was ASUS Notebook,
with Intel Core2 Duo CPU P8700 @ 2.53GHz and 6 GB of
main memory, running Window 7. The NVIDIA GTX 260M
mobile GPU supporting OpenCL 1.0 and compute capability
1.1 was integrated. The GPU has 14 compute units (multi-
processors) with 8 processing elements (scalar cores) each, or
112 processing elements in total and a performance of 462
GFLOPS. The programming tool was Microsoft Visual Stu-
dio 2008 in which C/C++ programs were built in a release
mode.

Fig. 2 shows that the mean and max errors computed rel-
ative to the simulated displacement field are smaller than or
equal to the average of voxel size, 1.98 mm, and the local
deformation has a larger error since the parameters of the bi-
LCC Demons algorithm were optimized for the global de-
formation. Fig. 3 shows comparison to the result using the
CPU double datatype. The GPU implementation with float
datatype and hardware interpolation exhibits slightly bigger
errors than that the GPU implementation with software inter-
polation, but the errors are still negligible while the runtime
is reduced by 16.1%.

Table 1 shows the speedup contribution of each tech-
nique used in the GPU implementation of the liver MRI
motion correction obtained with real images. The largest
speedup is achieved by the parallel reduction, in which all

785

Fig. 3. Simulation results: the mean and max displacement
errors for the method implementations in CPU, GPU with
hardware and software interpolation, all using float precision,
relative to the CPU implementation with double precision.
All units are millimeters.

Speedup Factor (%)
Pre-compilation 3.7

Hardware interpolation 16.1
Parallel reduction 51.2

Table 1. Speedup factors introduced by the three techniques
of GPU programming

CPU [s] GPU [s] SUC
Gradient 0.28 0.029 9.7

Incremental displacement 1.03 0.013 79.2
Three Gaussian filtering 21.79 0.36 60.5
Tri-linear interpolation 1.62 0.039 41.5

LCC\SLCC 0.32 0.0060 53.3
Misc (*, +, ...) 2.90 0.11 25.7

One iteration 27.94 0.56 49.9
100 iterations 2790 56 50.0

Translation-only 4.03 1.76 2.3

Table 2. The comparison of the CPU and GPU run time for
each kernel, as well as the speed up factor (SUC).

(a) (b)

Fig. 4. Checkerboard display of a pre-contrast scan and post-
contrast scan before (a) and after (b) motion correction. Note
the improvement in alignment indicated by the white arrows.

work-items need to be busy and escape data conflict. Ta-
ble 2 indicates that the GPU implementation outperforms the
CPU implementation by approximately 50 times. In GPU
implementation it took 1.76 sec for translation-only and 56
sec for bi-LCC demons registration, thus 57.76 sec for one
post-contrast scan and 6.7 min for a sequence of seven post-
contrast scans. In contrast, in CPU implementation it took
4.03 sec for translation-only and 46.5 min for bi-LCC demons
registration, thus 46.5 min for one post-contrast scan and 5.4
hrs for a sequence of seven post-contrast scans. Note that
the Gaussian filtering is the most expensive process because
this kernel has the most GFLOP per iteration. Fig. 4 shows
alignment improvement achieved by the motion correction of
a pre-contrast and post-contrast liver MRI scan of a patient.

We showed that a GPU implementation of the motion cor-
rection of contrast-enhanced liver MRI scans can reduce the
run-time by a factor of 50 without sacrificing accuracy. The
approach does not require specialized hardware; in fact, the
results were achieved on a consumer laptop. Since the method
was implemented in OpenCL, it is not restricted to a specific
vendor or hardware. The sub-minute run time allows for a
regular clinical use of the liver motion correction.

4. REFERENCES

[1] Pickle LW, Mungiole M, Jones GK, and
White AA, Atlas of United States Mortal-
ity, National Center of Health Statistics, 2010,
http://www.cdc.gov/nchs/data/misc/atlasmet.pdf, ac-
cessed June 2010.

[2] J.P. Thirion, “Image matching as a diffusion process: an
analogy with Maxwell’s demons,” Medical Image Anal-
ysis, vol. 2, no. 3, pp. 243–260, 1998.

[3] P. Cachier and X. Pennec, “{3D} Non-Rigid Registration
by Gradient Descent on a Gaussian-Windowed Similarity
Measure using Convolutions,” Proc. of MMBIA00, pp.
182–189, 2000.

[4] S.S. Samant, J. Xia, P. Muyan-
”Ozçelik, and J.D. Owens, “High performance comput-
ing for deformable image registration: Towards a new
paradigm in adaptive radiotherapy,” Medical Physics, vol.
35, pp. 3546, 2008.

[5] P. Muyan-Ozcelik, J.D. Owens, J. Xia, and S.S. Samant,
“Fast deformable registration on the GPU: A CUDA im-
plementation of demons,” in International Conference on
Computational Sciences and Its Applications, 2008, pp.
223–233.

[6] A. Munshi, “OpenCL 1.0 Specification,” Khronos Group,
May, 2009.

786

